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1 Background Problems

Electric and Magnetic Fields
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a) Two charges −q and 2q are at x = −a and x = a respectively. A test charge is
placed at x = d. Find d if the force on the test charge is zero.

b) Suppose an infinite straight wire has constant current I. Taking C to be a
circular loop with radius r and appealing to symmetry, use Ampere’s Law to
determine the magnitude of the magnetic field at a distance r from the wire.

c) An electric field E and magnetic field B are directed along the +z-axis. A
mass m with charge q starts at the origin with velocity v along the +x-axis.
Find the position of the particle as a function of time and describe the motion.

Solution.

a) The three cases of d are d < −a, −a < d < a, and d > a. It can be dynamically
inferred that the cases d < −a and d > a cannot hold true as the net force upon d
cannot be 0 for these cases (the forces at −a and a do not cancel). Thus, −a < d < a
is the only acceptable case for d. Since we want the net force at d to be 0, we can
say that the sum of the Lorentz forces at −a and a must be 0. The charges at −a
and a have velocity 0, and the distances from −a to d and d to a are d+a and a−d,
respectively. From this, we get the equation − 1

(d+a)2 + 2
(a−d)2 = 0 by the Lorentz

Force Equation and Coulomb’s Law. This leads to the answer d = −3a ± 2a
√

2.
To check for extraneous solutions, we can check the base case a = 1. This leads us
to the values −3± 2

√
2 for d. The former holds true for the case −a < d < a and

correlates to d = −3a + 2a
√

2, while the latter does not hold true for the chosen
case. Therefore, d = −3a+ 2a

√
2.

b)
∮
c B · dr = µ0I is the given equation for Ampere’s Law. In order to find the

magnitude of the magnetic field, we must derive a new equation (note that the
strength of the magnetic field is the magnitude). The newly derived equation will
be in terms of the variable B. Deriving the new equation will only have 2 steps;
first we must convert dr into 2πr. After this we have the equation;

∮
c B ·2πr = µ0I.

The next step would be to divide the left hand side by 2πr, which would in turn
cause the right hand side to be divided by 2πr. The newly derived equation would
be B = µ0I

2πr . Since the given values of r and I are just r and I, respectively, the
final magnitude of the magnetic field at a distance r from the wire is simply µ0I

2πr T.

c) From Coulomb’s Law, it can be derived that m’s electric field is E = qr̂
4πε0r2 . By

Ampere’s Law, it can be determined that m’s magnetic field is B = µ0I
2πr . Now we can

use a rearrangement of the Lorentz Force Equation to determine the velocity, which
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leads us to v = 2πrF
qµ0I
− r̂

2µ0Irε0
. Since position is the time-integral of velocity, we can

model m’s position as the position function x(t) =
∫
vdt =

∫
(2πrF
qµ0I
− r̂

2µ0Irε0
)dt =

2πrFt
qµ0I

− r̂t
2µ0Irε0

. The constant of integration is disregarded since the initial position
of m is x = 0 (in other words, the constant of integration is 0, which does not
have to be written). Since m’s velocity is constant, it can be kinematically inferred
that the acceleration of m is 0. Therefore, the mass m with charge q moves at
velocity v = 2πrF

qµ0I
− r̂

2µ0Irε0
and acceleration 0, and m’s position can be modeled as

x(t) = 2πrFt
qµ0I

− r̂t
2µ0Irε0

.
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Conductors
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1. Find the resistance of a conductor with cross-sectional area A, length L, and
conductivity σ in terms of the given variables.

2. After a long time, the electrons in a current will move with constant drift
velocity vd. Find vd for a conductor placed in a uniform electric field E.

3. Suppose the conductor has electron density n and conductivity σ. Show the
average time between electron collisions is τ = mσ

e2n
.

Solution.

1. From Ohm’s Law, we can derive that R = V
I

. By the Electric Potential Difference
formula, we can easily integrate to find V as such: V = −

∫ 0
L Ed` = EL. By Ohm’s

Law, we can also derive that I = AJ = AσE. This leads us to R = V
I

= EL
AσE

= L
Aσ

.
Therefore, the resistance of the conductor is R = L

Aσ
.

2. Let e = q, where q was originally the variable for the electron charge. At the start,
we can use F = ma. We switch around the equation to a = F

m
. This gives us the

acceleration and we can use this in terms of the electric field, which gives us a = eE
m

.
Within the conductor, these electrons collide very often, and we can use τ to define
the time between collisions. Thus, we can integrate both sides with respect to time
in order to find vd as velocity is the time-integral of acceleration. This leaves us
with vd = eEτ

m
. Therefore, vd = eEτ

m
for a conductor placed in a uniform electric

field E.

3. Suppose that e is the charge of electrons. To begin, we use a rearrangement of the
drift velocity formula: τ = vdm

eE
. Since E = J

σ
by Ohm’s Law and E is uniform,

it can be inferred that J and σ are equivalent. Since E is uniform, it can also
be inferred that E = e

4πε0 by Coulomb’s Law (r must be 1 since E is uniform
and r̂ is negligible). By relating the two established values for E, we can get the
following identities: J = e, σ = 4πε0, E = 1, J = e = σ. Now by substituting
these identities into the τ equation, we get τ = vdm

eE
= vdmσ

eJ
= vdmσ

e2 . Now we can
assume n = v−1

d = m
eEτ

. This can be directly proved by substituting the assumed
value of n into the τ equation: τ = mσ

e2n
= mσ

e2 m
eEτ

= mσEτ
em

. Since E is 1 and e = σ,
τ = mσEτ

em
= τ , which is an identity that implies the assumed value of n holds true.

Therefore, τ = vdm
eE

= vdmσ
eJ

= vdmσ
e2 = mσ

e2n
.
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Circuits
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1. Joule’s first law states the resistor will dissipate power P = IV = I2R in the
form of heat. By conversation of energy, an equal power must be delivered to
the circuit. Where does this power come from?

Solution.

1. Within a resistor, electrons move around and collide. These electrons create small
amounts of kinetic energy which then are dissipated into heat energy.
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2 BCS Theory

Quantum Statistics
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1. Using the spin-statistics theorem, show that bosons have integral spin while
fermions have half-odd-integral spin.

2. Justify the Pauli exclusion principle, which states that two fermions can not
occupy the same quantum state.

Solution.

1. Let x map to r1, r2 and −x to r2, r1. ψ(x) = ψ(−x) for bosons from the spin-
statistics theorem. ψ(x) = −ψ(−x) = −ψ(x) for fermions from the spin-statistics
theorem. This implies that the wavefunction is symmetric for bosons and anti-
symmetric for fermions. In quantum mechanics, symmetry implies an integer spin.
Therefore, bosons must have an integral spin because of their even wavefunction,
and fermions must have a non integral odd spin as implied by their odd wavefunc-
tion.

2. The wavefunction for a fermion is antisymmetric. Hence, under an exchange of the
two position vectors of the fermion wavefunction, one form is positive while the
other is negative. Therefore, if one side of the wavefunction for a fermion produces
positive spin, it implies that its exchange leads to a negative spin. Their different
spins imply a difference in quantum states. Thus, the antisymmetric wavefunction
for a fermion leads to positive spin on one side and negative spin under a exchange
symmetry, implying a difference in quantum states.
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